If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-122t-99=0
a = 16; b = -122; c = -99;
Δ = b2-4ac
Δ = -1222-4·16·(-99)
Δ = 21220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21220}=\sqrt{4*5305}=\sqrt{4}*\sqrt{5305}=2\sqrt{5305}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-122)-2\sqrt{5305}}{2*16}=\frac{122-2\sqrt{5305}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-122)+2\sqrt{5305}}{2*16}=\frac{122+2\sqrt{5305}}{32} $
| 5x=2x+10+x | | (3x+4)-5=-2 | | -2/3x+1/3+x=0.4 | | 2f-12=8 | | X2-10x+64=0 | | 14x=190 | | 2-5v=37 | | 6-(y+1)=8 | | x+38+60=180 | | p=13*6 | | 3(x-8)+12=16 | | 5(x/2+8)=-65 | | -3x-11-2x=9 | | p=6-13 | | 8x+2x+5= | | -2x-4+3x=3 | | (22x-3)=(5x-9) | | (4x-17)+(5x-19)=180 | | -15+3x+x=13 | | 5f+13=-3f+1 | | 1,5m=-1 | | 2.10p+12.99=21.39 | | 3g-2(g+4)=8(g-1 | | 1+6v+5=47 | | 5.64+w=10 | | (x+17)+(3x-5)=180 | | 2(11x-3)=(5x-9) | | -8y=-y-15 | | x+2x-8=13 | | 14+4x+2+13x=10x+12+7x+4 | | 5w+17=97 | | 3x-10+82=X |